Crea sito

Radicali esercizi svolti

In questa pagina presentiamo alcuni esercizi svolti sui radicali.

Esempio 1.1.- Semplificazione di un radicale. Semplificare i radicali aritmetici

\[\sqrt[9]{\frac{\left ( a+b \right )^{3}}{a^{6}b^{3}}}\]  \[\sqrt[9]{\frac{\left ( a+b \right )^{3}}{a^{6}}}\]

Per questi due radicali …vedi il mio video

Esempio 1.2.- Semplifica il radicale \[\sqrt{\frac{a^{5}+2a^{4}b+a^{3}b^{2}}{a^{7}b^{2}}}\]

Se non riesci a farlo vedi il mio video su Youtube

Esempio 1.3.- Semplifica il radicale \[\sqrt[10]{\frac{\left ( 9x^{2}-6x+1 \right )\left ( 14x-x^{2}-49 \right )}{16x-16x^{2}-4}}\]

Se non riesci a semplificarlo vedi il mio video sul Youtube

Esempio 2.1.- Prodotto tra due radicali con indici diversi. Eseguire il seguente prodotto

\[\sqrt[3]{\frac{3}{8}}\cdot \sqrt[4]{\frac{4}{27}}\]

Non hai capito bene? Allora vedi il mio video su Youtube

Esempio 2.1.- Eseguire il seguente prodotto \[\sqrt[3]{\frac{x^{2}+2x+1}{x^{2}}}\cdot \sqrt{\frac{x}{x+1}}\]

Non hai capito? Allora consulta il mio video su Youtube

Esempio 3.1.- Somma tra radicali. Eseguire la seguente somma \[3\sqrt{54}-2\sqrt{150}+5\sqrt{600}\]

Non hai capito bene? Allora vedi il mio video su Youtube

Esempio 3.2.-  Eseguire la seguente sottrazione \[\sqrt{50x^{2}+20x+2}-\sqrt{8x^{2}+16x+8}\]

Vedi il mio video se ne hai bisogno

Esempio 4.- Radicale doppio. Semplificare i seguenti radicale doppi \[\sqrt{21-12\sqrt{3}}\] \[\sqrt{5+\sqrt{24}}\]

Per vedere come si fa vedi il mio video su Youtube

Per il secondo radicale doppio vedi il video qui

Esempio 5.- Espressioni con radicali e condizioni di esistenza. Semplificare la seguente espressione \[\sqrt{\frac{a^{2}+a}{a^{3}}}\cdot \sqrt{\frac{4a}{\left ( a+1 \right )^{3}}}:\sqrt{\frac{a^{3}-a}{a^{2}-1}}\]

Vedi il mio video per capire meglio!

Esempio 6.- Semplificare la seguente espressione \[\sqrt[5]{\frac{x^{2}-x-6}{x^{2}-x}}:\sqrt[3]{\frac{x^{4}+2x^{3}}{x^{2}-2x+1}}\cdot \sqrt[5]{\frac{x-3}{x^{4}+6x^{2}+4x^{2}}}\]

Se non riesci a farlo vedi il mio video su Youtube

Esempio 7.- Trasporto sotto il segno di radice. Trasportare sotto radice \[x\sqrt[3]{x^{2}}\]

Se non riesci a fare l’esercizio vedi il mio video

Esempio 8.- Razionalizzazione. Razionalizzare la frazione \[\frac{2}{\sqrt{5}-\sqrt{3}}\]

Se non riesci a farlo vedi il mio video su Youtube